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ABSTRACT 

The purpose of this paper is to understand matrix fac-

torization theory and to be able to apply them to 

chemical reaction networks for network reduction. 

After necessary descriptions on chemical reaction 

networks, in particular, metabolic networks, and brief 

review on metabolic balancing and flux mode analysis 

using elementary flux modes (EFMs) we give the mo-

tivation for structure and property preserved network 

model reduction. The paper presents some insights on 

geometry and numerical computations of matrix fac-

torization such as the traditional SVD and QR method 

as well as Link matrix factorization in conservation 

analysis. The paper deals with matrix factorization 

based reduction technique applied to the problems 

arising in parameter sensitivity analysis of the dy-

namical system from chemical reaction networks, 

metabolic balancing and EFMs in flux mode analysis. 

In particular, a minimal number reduction of internal 

reversible reactions is proposed in the last mentioned 

problem. Numerical examples are given for illustra-

tion. 

Keywords: Metabolism,Stoichiometric matrix, or-

thogonal factorization, link matrix, elementary flux 

mode. 

 

I. INTRODUCTION 
The term metabolism comes from the Greek 

word meatball. It means change. A metabolic network 

is the complete set of metabolic and physical 

processes that determine the physiological and bio-

chemical properties of a cell. As such, these networks 

comprise the chemical reactions of metabolism, the 

metabolic pathways, as well as the regulatory interac-

tions that guide these reactions ([15]). The study of 

metabolism has changed drastically during the last 

century, [28]. There is a large variety of research ac-

tivities within biochemical networks, in particular on 

computational efficiency. "The activity in a biochem-

ical networks often conserves certain molecular sub-

groups. Each conserved subgroup contains several 

molecular species, and the total mass of the species is 

conserved as the species move around closed loops in 

the network. The subgroups are called conserved 

moieties or simply moieties. 

Other examples include nicotinamide adenine dinuc-

leotide(NAD)/nicotinamide adenine 

dinucleotide hydride(NADH), coenzyme A(CoA)/ 

Acetyl coenzyme A (Acetyl-CoA), and phosphory-

lated/ unphosphorylated protein. The total amount of 

each moiety is determined by the initial conditions" 

([13]). 

In the complete set of chemical reactions (metabol-

ism) that occur in the smallest unities in biology called 

cells of an organism, nutrients supplied by the envi-

ronment are transformed into energy and molecular 

building blocks. Stoichiometry is a fundamental 

computation of relative quantities of reactants and 

products in chemical reactions and is founded on the 

law of conservation of mass where the total mass of 

the reactants equals the total mass of the products 

leading to the insight that the reactions among quanti-

ties of reactants and product typically form a ration of 

positive integers. 

Mathematical modeling is a very powerful 

tool in physics, chemistry, and engineering for inter-

pretation and prediction of natural phenomena and 

experimental results [9]. It is the method of simulatin-

greal-life situations with mathematical equations to 

forecast their future behavior. Mathematical modelof 

metabolism is used to analyze its properties and capa-

bilities of metabolic networks or to identify suitable 

targets for that metabolic engineering. A mathematical 

model is always a simplification of the actual pheno-

menon and it is therefore possible to establish differ-

ent mathematical models for the same phenomenon, 

depending on the objectives of the model and the 

available measurements [1]. 

There are two attempts to develop mathe-

matical models for description of metabolism, in con-

trast to the traditionally followed approach of meta-

bolic modeling using coupled ordinary differential 

equations and formulation of linear programming 

problems. Flux balance analysis requires very little 
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information in terms of the enzyme kinetic parameters 

and concentration of metabolites in the system. 

Its achievement makes two assumptions, 

steady state and optimality. The first assumption is 

that the modeled system has entered a steady state, 

where the metabolite concentrations no longer 

change, i.e. in each metabolite node the pro-

ducing and consuming fluxes cancel each other 

out.The second assumption is that the organism has 

been optimized through evolution for some biological 

goal, such as optimal growth or conservation of re-

sources. The assumption of the steady-state reduces 

the system to a set of linear equations, which is then 

solved to find a flux distribution that satisfies the 

steady-state condition subject to the stoichiometry 

constraints while maximizing or minimizing the value 

of the objective function (a pseudo-reaction ) 

representing the conversion of biomass precursors into 

biomass. 

Consider the following dynamical system 

arising from chemical reaction network described 

above 
dx

dt
= Sv(x, κ) 

with x being an unknown vector of m-components, S 

being an m × nstoichiometric matrix (whose more 

precise definition is given later) and κ a vector of 

positive real parameters whose length depends on the 

specific application. 

In general the number of states m will be very large. 

So it is natural to work on model reduction of such 

large systems. However, to reduce model is not suffi-

cient. A satisfactory and useful reduction for real 

world problems should preserve the structure of the 

original and should capture properties of the original 

model. This is the objective of the current thesis. Our 

main focus is on chemical networks, in particular from 

metabolic networks that mathematically can be cha-

racterized by a stoichiometric matrix. 

 

II. MODEL REDUCTION BY MATRIX 

FACTORIZATION 
Now we turn to the stoichiometric analysis and 

using the network structure to reduce the dimension of 

networks. We present two methods and their applica-

tions in this chapter. 

1.1. Orthogonal factorization 

TheSVD and QR matrix factorization can be 

used to remove conservationrelations in the stoichi-

ometric matrix. Theidea is based on [37]. Instead of 

the link matrix we use the orthogonal matrix Ufrom 

the SVD or QR factorization of the m × n  stoichi-

ometric matrix S with rank r: 

 Using SVD we have the factorization S =
 U(ΣVT ) with U ∈ ℝm×m and V ∈ ℝn×n being ortho-

gonal and Σ ∈ ℝm ×n =  Σ1 0 where Σ1 ∈ ℝ
r×n all 

components 0 except on the diagonals has. Now parti-

tioning U as follows: 

U =  L G , 

Where L ∈ ℝm×r and G ∈ ℝm× m−r . 
 Using QR, SP = QR  where Q ∈ ℝm ×m  is or-

thogonal, P ∈ ℝn×n  is a permutation matrix and 

R ∈ ℝm×n  has the form R =  R1
T 0 T  with 

R1 ∈ ℝ
r×r . This gives the factorization of S  inthe 

form S = Q RPT . Partition Q as follows: 

Q =  L G , 

Where L ∈ ℝm×r and G ∈ ℝm× m−r . 
Apparently the matrices L and G have the following 

properties due to the orthogonality of Uand Q 

LTL = Ir , GT G = Im−r , GT L = 0 or LTG = 0. 
Let M = ΣVT(by SVD) or M = RPT(by QR). Next, 

we show that we can find a matrix Sr ∈ ℝ
r×n  such 

that  

S = LSr . 
In the case of SVD we have 

S = UM =  L G  
Σ1

0
 VT = L Σ1VT . 

So, we find Sr = Σ1VT . 
In the case of QR we have 

S = QM =  L G  
R1

0
 PT = L R1PT . 

Hence Sr = R1PT . 
Furthermore we see that the columns of G describes 

all conservation laws of G sinceGTS = GTLSr .  
Applying this factorization to the dynamical system of 

the network 
dx

dt
= Sv(x, κ) 

where κ is a vector of parameters. Since disturbance 

of parameters will cause dynamical behavior change, 

often we want to investigate the sensitivity of steady 

state and stability properties in terms 

of small disturbance of parameter e.g. [21]. It explains 

why we put another argument in the reaction rate vec-

tors v. 

Applying the above factorization of the stoichiometric 

matrix S we have 
dx

dt
= LSrv(x, κ) 

which can be reduced to by pre-multiplying 𝐿𝑇to this 

equation and the fact that 𝐿 is orthogonal: 
𝑑𝑧

𝑑𝑡
= 𝑆𝑟𝑣(𝑥, 𝜅) 

This system has order 𝑟 ≤ 𝑚𝑖𝑛(𝑚,𝑛) if we have a 

system depending only on 𝑧. Since 𝐿𝑇has fewer rows 

than the columns the variable change 𝑧 = 𝐿𝑇𝑥will not 

bring back the 𝑥 by an immediate inversion. 

To overcome this difficulty we use the following 

property from chemical reaction theory [7]: For each 

concentration vector 𝑥0, the affine space 

𝑆 = 𝑥0 + 𝐼𝑚 𝑆  
is the stoichiometric compatibility class. 
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We can prove that 𝑥 ∈ 𝑆 if and only if 

𝐺𝑇 𝑥 − 𝑥0 = 0 ⟺ 𝐺𝑇𝑥 = 𝐺𝑇𝑥0 . 
Then for the stoichiometric class determined by 

𝐺𝑇𝑥0we have 

 
𝑧

𝐺𝑇𝑥0
 =  𝐿

𝑇𝑥
𝐺𝑇𝑥

 =  𝐿
𝑇

𝐺𝑇
 𝑥 = 𝑈𝑇𝑥 

Which yields 

𝑥 = 𝑈  
𝑧

𝐺𝑇𝑥0
 = 𝐿𝑧 + 𝐺𝐺𝑇𝑥0                    (2.1)  

Hence we obtained a reduced dynamical system of the 

network 
𝑑𝑧

𝑑𝑡
= 𝑆𝑟𝑣 𝐿𝑧 + 𝐺𝐺𝑇𝑥0 ,𝜅                           (2.2) 

with the initial condition𝑧 0 = 𝐿𝑥0 . 

The state vector 𝑥 obtained by (2.1) is indeed in the 

stoichiometric class determined by 𝐺𝑇𝑥0 for any 

𝑟-vector 𝑧 since 

𝐺𝑇𝑥 = 𝐺𝑇 𝐿𝑧 + 𝐺𝐺𝑇𝑥0 = 𝐺𝑇𝑥0 . 
Above results are taken from [37]. However we can 

reduce the model further and we show later that such a 

further reduction benefit some problems in for exam-

ple calculating steady states, sensitivity analysis and 

metabolic balancing. 

To this end, we take a close look at the equation (2.2). 

At the steady state we have the equation 

𝑆𝑟𝑣 𝐿𝑧 + 𝐺𝐺𝑇𝑥0 ,𝜅 = 0 
Here the matrix 

 
 

1.2. Link matrix factorizations 

We continue exploring the effect of link matrix dis-

cussed in the context of model reduction. There is a 

matrix 𝐿𝑟  such that 𝑆 = 𝐿𝑟𝑆𝑟  where 𝐿𝑟 =
 𝐼𝑟 𝐿0

𝑇 𝑇  and 𝐿0 is the link matrix. 

Note that subscript 𝑟 of S stands for the rank of 𝑆 

and subscript 𝑟 of 𝐿 stands for row link. 

The link matrix 𝐿𝑟 is also related to the conservation 

matrix 𝐺 =  −𝐿0 𝐼𝑚−𝑟 . This procedure removes the 

row redundancy and thus the conservation relations. 

Therefore the dynamical system and the steady state 

balance equation are reduced to 
𝑑𝑥𝑖𝑛𝑑
𝑑𝑡

= 𝑆𝑟𝑣 𝐿𝑥𝑖𝑛𝑑 + 𝐶, 𝜅 , 

and  

𝑆𝑟𝑣 𝐿𝑥𝑖𝑛𝑑 + 𝐶, 𝜅 = 0 

respectively. 

As observed as in the previous section we can reduce 

the matrix 𝑆𝑟 ∈ ℝ
𝑟×𝑛 further if 

𝑟 < 𝑛. The same principles used for derivation of 𝐿𝑟  

can be used to represent the dependent columns in 𝑆𝑟 . 
Transpose 𝑆𝑟  and partition 𝑆𝑟

𝑇  into 𝑟  independent 

row 𝑆𝑟𝑐  and 𝑛 − 𝑟 dependent rows which are 𝐿1
𝑇𝑆𝑟𝑐  

with 𝐿1 ∈ ℝ
𝑟× 𝑛−𝑟 . 

Then 

𝑆𝑟
𝑇 =  

𝐼𝑟
𝐿1
𝑇  
𝐿𝑐
𝑇

𝑆𝑟𝑐
𝑇 = 𝐿𝑐

𝑇𝑆𝑟𝑐
𝑇 . 

Hence there are matrices 𝐿𝑟 ∈ ℝ
𝑚×𝑟 and 𝐿𝑐 ∈

ℝ𝑟×𝑛such that 

𝑆 = 𝐿𝑟𝑆𝑟𝑐𝐿𝑐 , 

Where𝐿𝑟 =  
𝐼𝑟
𝐿0
  and 𝐿𝑐 =  𝐼𝑟 𝐿1 .So the dynami-

cal system and the steady state balance equations are 

reduced to 
𝑑𝑥𝑖𝑛𝑑

𝑑𝑡
= 𝑆𝑟𝑐𝐿𝑐𝑣 𝐿𝑥𝑖𝑛𝑑 + 𝐶, 𝜅 , 

And  

𝐿𝑐𝑣 𝐿𝑟𝑥𝑖𝑛𝑑 + 𝐶, 𝜅 = 0. 
Since the matrix 𝑆𝑟𝑐has full rank. Clearly the steady 

state balancing depends only on the link matrices, 

does not depend on 𝑆𝑟𝑐 . 

1.3. Metabolic balancing 

We state the problem by an example. Con-

sider the model of Glucose metabolism in bacteria 

studied in [39]. 

According to the steady state balancing equation pre-

sented in [39] we can write down stoichiometric ma-

trix: 
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Figure 2.1: Glucose metabolism in bacteria 

 

The rank is 16. So it is a full row rank stoi-

chiometric matrix. A straightforward calculation 

shows that the columns 1-5, 7-10, 16, 21, 24 to 27 and 

29 form a full rank matrix that is the independent part. 

We only have to find  𝐿𝑐 . Moreover 

𝑣3 , 𝑣6 ,𝑣9, 𝑣11 ,𝑣13 ,𝑣15 ,𝑣17 ,𝑣20 ,𝑣26  and 𝑣30  were 

derivedfrom cellular mass composition. 

In general we split the known and unknown parts in 

addition to dependent and independent columns so 𝑣 

can be partitioned as 

𝑣 =

 

 
 

𝑣𝑖𝑛𝑑
1

𝑣𝑖𝑛𝑑
2

𝑣𝑑𝑒𝑝
1

𝑣𝑑𝑒𝑝
1
 

 
 

 

 

where𝑣1 and 𝑣2  are known and unknown reaction rates. According to the link matrix factorization 

 𝐼𝑟 𝐿1 

 

 
 

𝑣𝑖𝑛𝑑
1

𝑣𝑖𝑛𝑑
2

𝑣𝑑𝑒𝑝
1

𝑣𝑑𝑒𝑝
1
 

 
 

= 0 ⟺ 

 
𝐼 0 𝐿11 𝐿12

0 𝐼 𝐿21 𝐿22
 

 

 
 

𝑣𝑖𝑛𝑑
1

𝑣𝑖𝑛𝑑
2

𝑣𝑑𝑒𝑝
1

𝑣𝑑𝑒𝑝
1
 

 
 

= 0 

 

Matrix manipulation yields the following 

 
0 𝐿12

𝐼 𝐿22
 𝑣2 = − 

𝐼 𝐿11

0 𝐿21
 𝑣1 . 

Next task is to invert the matrix  
0 𝐿12

𝐼 𝐿22
 . 

 

It is much easier to invert this matrix than directly invert 𝑆(1)by setting 𝑆(1)𝑣1 = 𝑆(2)𝑣2 if the inverse exists. 

In this case it can be done by standard block matrix manipulation. Note that  
0 𝐿12

𝐼 𝐿22
 is invertible if and only if 

𝐿12 is invertible. Now 
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0 𝐿22

𝐼 𝐿12
 
−1

=  
𝐼 −𝐿22𝐿12

−1

0 𝐿12
−1  . 

Then 

 
0 𝐿12

𝐼 𝐿22
 
−1

=  
−𝐿22𝐿12

−1 𝐼

𝐿12
−1 0

 . 

Hence 

𝑣2 = − 
−𝐿22𝐿12

−1 𝐼

𝐿12
−1 0

  
𝐼 𝐿11

0 𝐿21
 𝑣1 

   = − 
−𝐿22𝐿12

−1𝑣𝑖𝑛𝑑
1 +  𝐿21 − 𝐿22𝐿12

−1𝐿21 𝑣𝑑𝑒𝑝
1

−𝐿22𝐿12
−1𝑣𝑖𝑛𝑑

1 + 𝐿12
−1𝑣𝑑𝑒𝑝

1  . 

 

In general 𝐿12 is not invertible or not square. Then we can use the pseudoinverse for block matrix. In-

deed we made use of the Schur complement in computation of the inverse above. Now we use the generalized 

Schur complement to determine the inverse for non-square or singular matrix 𝐿12. 

Let 𝑀 =  
𝐴 𝐵
𝐶 𝐷

  of  𝑝 + 𝑟 ×  𝑞 + 𝑠  where 𝐴is 𝑝 × 𝑞, 𝐵is 𝑝 × 𝑠, 𝐶 is 𝑟 × 𝑞 and 𝐷 is 𝑟 × 𝑠. 

First we treat the case where𝐷 ∈ ℝ𝑟×𝑠 with 𝑟 ≥ 𝑠 and the rank of 𝐷 is 𝑠 then 𝐷+𝐷 = 𝐼𝑠 . It follows that  

𝑀 =  
𝐴 𝐵
𝐶 𝐷

  

       =  
𝐼𝑝 𝐵𝐷+

0𝑟×𝑝 𝐼𝑟
  
𝐴 − 𝐵𝐷+𝐶 0𝑝×𝑠

𝐶 𝐷
  

So the linear system 

 
𝐴 𝐵
𝐶 𝐷

  
𝑥
𝑦 =  

𝑢
𝑣
  

becomes a block triangular system and if 𝑝 ≥ 𝑞 and rank of𝐴 − 𝐵𝐷+𝐶 is 𝑞 we have 

𝑥 =  𝐴 − 𝐵𝐷+𝐶 +(𝑢 − 𝐵𝐷+𝑣) 

𝑦 = 𝐷+ 𝑣 − 𝐶𝑥 .                           
Next we deal with the case𝐷 ∈ ℝ𝑟×𝑠  with 𝑟 ≤ 𝑠 and the rank of 𝐷 is 𝑟. Then 𝐷+𝐷 = 𝐼𝑟  and  

𝑀 =  
𝐴 𝐵
𝐶 𝐷

  

       =  
𝐴 − 𝐵𝐷+𝐶 𝐵

0𝑟×𝑞 𝐷
  

𝐼𝑞 0𝑞×𝑠

𝐷+𝐶 𝐼𝑠
 .                    

The system  

𝑀𝑇  
𝑥′
𝑦′
 =  

𝑢′
𝑣′
  

is transformed to a block triangular system and if 𝑝 ≤ 𝑞 and the rank of  𝐴 − 𝐵𝐷+𝐶 𝑇  is 𝑝, we have  

𝑥′ =   𝐴 − 𝐵𝐷+𝐶 𝑇 +(𝑢′−  𝐷+𝐶 𝑇𝑣′) 

𝑦′ =  𝐷𝑇 + 𝑣′ − 𝐵𝑇𝑥′ .                             
 

Let us return to the example from [39]. Now 𝐿𝑐 in decomposed form is 

 

𝑣1 =  𝑟3 , 𝑟9, 𝑟26     
𝑣𝑖𝑛𝑑

1

, 𝑟6 , 𝑟11 , 𝑟13 , 𝑟15 , 𝑟17 , 𝑟20 , 𝑟30                 
𝑣𝑑𝑒𝑝

1

 

𝑇
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𝑣𝑖𝑛𝑑
2 =  𝑟1 , 𝑟2 , 𝑟4 , 𝑟5 , 𝑟7 , 𝑟8 , 𝑟10 , 𝑟16 , 𝑟21 , 𝑟24 , 𝑟25 . 𝑟27 , 𝑟29 

𝑇 

𝑣𝑑𝑒𝑝
2 =  𝑟12 , 𝑟14 , 𝑟18 , 𝑟19 , 𝑟22 , 𝑟23 , 𝑟28 , 𝑟31 , 𝑟32 , 𝑟33 

𝑇 

Solving the following equation 

 

 
 

yields the unknown flux distribution 

𝑣2 = (0.673767,0.468767,0.874589,0.405822, 
0.022411,0.383411,0.606263, 0.0422099, 

0.60263,0.209075,0.209075,0.498717,0.289642, 
0.699574,0.886737,0.757197,0.799407,0.196777, 
0.196777,0.788358, 0.67788,0.178955,0.899045) 

 

1.4. Networks with equivalent steady state 

In our reduction procedure we have seen that 

the full rank matrix 𝑆𝑟𝑐 does not play any role for 

analysis of steady state balancing. It depends only on 

the left and right nullspace of the stoichiometric ma-

trix. In other words the nullspaces of the link matrices 

𝐿𝑟  and𝐿𝑐 . We demonstrated this by a small network. 

Now let us study a network from [19]: 
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The stoichiometric matrix of this network is 

 
efmtool gives 8 EFMs: 

 
 

Note that the ordering of the EFMs follows 

the conversion in [19] that is by the net conversion of 

external metabolites. In the figure (adapted from [19]) 

they are grouped by the net conversion of external 

metabolites (bottom of each box) as indicated by dif-

ferent gray background levels. 

 
 

The stoichiometric matrix has rank 6. So 

there is no linearly dependent rows. So we try to 

findthe link matrix for the columns. Obviously col-

umns 1, 2, 3, 4, 6, and 10 are linearly independent so 

We re-organized the columns so that 
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𝑆 =

 

  
 

1 0 0 0 −1 0 −1 0 0 −1
0 1 0 0 0 0 0 −1 −1 1
0 0 0 0 1 −1 0 1 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 1 0  

  
 

 

where column 5 is 𝑅6, column 6 is 𝑅10 and column 10 is 𝑅5. The others remain unchanged. Now we choose 

𝑆𝑟𝑐 =

 

 
 
 

1 0 0 0 −1 0
0 1 0 0 0 0
0 0 0 0 1 −1
0 0 0 0 0 −1
0 0 0 −1 0 1
0 0 −1 0 0 1  

 
 
 

 

And 

𝐿𝑐 =

 

  
 

1 0 0 0 0 0 −2 1 0 −1
0 1 0 0 0 0 0 −1 −1 1
0 0 1 0 0 0 −1 0 −1 0
0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 0 −1 1 0 0
0 0 0 0 0 1 −1 0 0 0  

  
 

 

Now any nonsingular matrix 𝑆𝑟𝑐  with the link matrix 𝐿𝑐  will result in a new network which is equivalent to 

the one we started with.  

For example 

𝑆𝑟𝑐 =

 

  
 

1 0 0 0 −1 0
0 1 0 0 0 0
0 0 0 0 1 −1
0 0 0 0 0 −1
0 0 0 −1 0 1
0 0 −1 0 0 1  

  
 

 

Then the network has stoichiometri matrix 

𝑆 =

 

  
 

1 0 0 0 −1 0 −1 0 0 −1
0 1 0 0 0 0 0 −1 −1 1
0 0 0 0 1 −1 0 1 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 −1 0 1 0 0 0 0
0 0 −1 0 0 1 0 0 1 0  

  
 

 

 
 

1.5. A case study on model reduction in flux mode 

analysis 

The idea comes from model reduction in 

control theory. Roughly speaking we try to get a mi-

nimal model for a given input/output description (ex-

ternal description). It is not necessary that a model we 

find from the external description should completely 

agree with the internal model. This gives us more 

freedom to choose model as far as the input/output 

description is satisfied. In this section we try to ana-

lyze if such an idea can be used in the network prob-

lem at hand with aim to reduce computation time. 

As proved earlier any stoichiometric matrices 

having same left and right nullspaces are equivalent 
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and the full rank matrix 𝑆𝑟𝑐  plays no roll. Thus we 

can use any full rank matrix together with the link 

matrices to generate equivalent networks. However if 

the rank of this matrix is dropped, thus the original 

matrix, then the nul spaces are enlarged and the net-

work is reduced to a smaller size. The aim of this sec-

tion is to examine if this can be applied to flux mode 

analysis. 

We begin with the network studied in the 

previous section, taken from [19]. There are four ex-

change reactions 𝑅1 ,𝑅2 ,𝑅3  and 𝑅4  the others are 

internal. We have chosen 𝑆𝑟𝑐  with the 

tions𝑅1 ,𝑅2 ,𝑅3 ,𝑅4 ,𝑅6 and 𝑅10  as independent part. 

Thus it includes two internal reactions R6 and𝑅10. 

Intuitively if we want to have the network as small as 

possible. In our case the maximal number of reactions 

that can be possibly eliminated are two, i.e. 𝑅6 and 

𝑅10 with the particular choice of𝑆𝑟𝑐 . In this sense the 

network we obtain will be minimal since the other 

reactions in 𝑆𝑟𝑐have external connections. 

Now setting the columns 5 and 6 in 𝑆𝑟𝑐  to zero and 

call the new matrix as𝑆 𝑟𝑐 . Define now the stoichiome-

tric matrix 𝑆 as we have done for generating equiva-

lent networks using the link matrices. In this example 

it is 

𝑆 = 𝑆 𝑟𝑐𝐿𝑐 =

 

  
 

1 0 0 0 0 0 −2 1 0 −1
0 1 0 0 0 0 0 −1 −1 1
0 0 1 0 0 0 −1 0 −1 0
0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 0 −1 1 0 0
0 0 0 0 0 1 −1 0 0 0  

  
 

 

From this matrix we see two internal spices C 

and D are eliminated and the other reactions remain 

unchanged, and 𝑅6 and 𝑅8 in the original model are 

merged into a single reaction R8 in the reduced one, 

likewise R7  and R10  are merged to a single 

tion R7. In particular the exchange species are consis-

tent with the original network. The network topology 

is shown in the figure below.Next we analyze flux 

modes by such reductions. We compute EFMs using 

efmtool to compare with theoriginal model. 

 
 

I. All the reactions are reversible. Then efmtoolfinds 

44 EFMs and the reduced network 6 EFMs. 

II. If the exchange reactions are irreversible and all 

others are reversible. efmtool gives 16 and 7 

EFMs for the original and the reduced network re-

spectively. 

These results indicate that the amount of EFMs are 

decreased significantly when the internal reversible 

reactions are eliminated. Now we take a close look in 

this issue. 

III. Assume that R2  (exchange reaction) and R8 

(internal) are reversible, the others are irreversible. 

We have already obtained the EFMs for the original 

model. Now we compute EFMs for the reduced net-

work and obtain 7 EFMs. 
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Compare with the EFMs we obtained for the 

original network we see that the EM1, EM5 and EM8 

are identical to the ones in the reduced model. The 

input/output exchange of EM3 and EM4 in the origi-

nal model are captured by EM4 in the reduced model. 

EM3 and EM7 of the reduced network are equivalent 

and are most likely represent EM7 in the original 

model. Since there is no R6 in the reduced model 

EM2 in the original model should not be found but 

could be interested by EM1 (fromR1to R3). Similar 

EM6 in the original network would be EM1 in the 

reduced one. Clearly EM6 in the reduced model is 

internal and has no counterpart in the original net-

work. 

IV. Assume that R6 and R10 (both are internal) are 

reversible and the others are irreversible then the 

original model has 7 EFMs: 

 
They are shown below. 
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The reduced model with all reactions irreversible has 5 EFMs 
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Evidently the EFMs agree to each other very 

well, Means that the method can recover EFMs in a 

system in which they are already known. EM6 in the 

original network does not have an elementary mode 

because this can be obtained by (ME3+ME5)/2 (re-

duced) which is not elementary. Exploiting the fact 

that any combination of infeasible EFMs with other 

infeasible or feasible EFMs is again infeasible[40], 

and can be removed from the analysis without im-

pacting biologically relevant EFMs. 

Overall we saved memory by removing in-

feasible EFMs and this reduces the time to perform in 

computation of the EFMs, since only EFMs that are 

thermodynamically consistent with a given metabolic 

network are computed. The time saved depends of the 

number of reactions removed in the network. 

 

1.6. Further discussions and conclusions 

The purpose of model reduction investigation 

is, as described in the Introduction section, the con-

cern of memory usage and computation time. This is 

the motivation behind this thesis. Our approach to 

these issues is matrix factorization since the network 

systems are very often big but sparse. In particular, we 

investigated the use of the concept Link matrix in 

study of conservation laws in the following problems, 

reduction of number of states and thus differential 

equations when analyzing steady state behavior, pa-

rametric sensitivity analysis, metabolic balancing 

equivalence of steady states and flux mode analysis to 

reduce the number of elementary flux modes (EFMs) 

through the network. 

In the last mentioned problem we proposed 

to eliminate the internal reversible reactions using the 

factorized structure. Note that this technique is in-

spired by the realization theory in control theory 

where we are only interested in the input-output model 

description so to reach a minimal realization and 

hence to get a smaller model. We worked out some 

examples taken from the existing research papers in 

each of these problems to illustrate the idea and our 

results. Due to the limit of time and computing facili-

ties we only worked on small examples. However the 

meaning of such an approach can be made clear as 

argued below. In [22] the core metabolic network in 

E. coli is discussed in the context of finding functional 

states. On the webpage http://systemsbiology.ucsd. 

edu/InSilicoOrganisms/Ecoli/Ecol-Reactions a con-

densed version of the genome-scale E. coli recon-

struction is presented. It contains central metabolic 

reactions. There are 62 internal reactions, 14 exchange 

reactions and a biomass objective function. Thus there 

are 77 reactions. The network has 63 reactants. The 

rank of the resulting stoichiometric matrix is 57. This 

means, according to the theory of the conservation 

laws, we can reduce 6 equations since there are 

6(= 63− 57) conservation laws. In other words in 

this example about 10% of the differential equations 

are redundant and so they can be safely eliminated 

from the model by using conservation laws. This has 

been done in many research papers. However, we car-

ried the reduction procedure further in this thesis by 

doing sort of column reduction. Let us call this a com-

plete reduction. Now we argue that this further reduc-

tion is on the line of the idea for save storage and 

computational costs. To this end we consider three of 

the issues we have worked on. Let us first turn to the 

model reduction discussed earlier where the steady 

state behavior is reduced to 

v1
Tv Lz + GGT x0 , κ = 0 where 

v =  v1 , v2 , v1 ∈ ℝ
n×r , U =  L, G , L ∈ ℝm×r  

by SVD.  

Consequently we can see, since V1 is non-

sigular that the matrix storage cost can be reducedby 

storing only L  and GGT x0 ∈ ℝ
m , which is 

m × r + m instead of the whole S which needs mn. 

In the 
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E. coli case  m =  63, n =  77 , it will be 

4851 without reduction and 3668 with reduction, re-

spectively. 

Hence it results in a reduction of more than 

75 percent. Of course we can still argue that the sto-

rage cost will be insignificant if the technique for the 

sparsity is used since the matrix S is sparse. So we 

next discuss the situation where we compute the sen-

sitivity matrix with reduction, without reduction
∂x

∂κ
=

tion
∂x

∂κ
= − 

∂v

∂x
 
−1 ∂v

∂κ
. It is apparent that the latter 

needs to compute m2 partial derivatives while the 

former r2. In the E. coli case they are 3249 and 3969 

respectively. So we save about 81% of computation 

time for derivations. Now we turn to the study of 

model reduction to reduce the number of EFMs 

through the network. The number of EFMs supported 

by a network increases fast with the size of a network. 

This leads to the difficulty of using EFM-based analy-

sis for large networks. In this thesis we proposed a 

reduction technique that preserves all exchange fluxes 

in order that the interaction between the network and 

environment is not changed. This was inspired by rea-

lization theory in mathematical control theory. If we 

are not interested in exactly how the interactions in the 

"blockbox" work but how the input and output beha-

vior is described then we just have to describe this 

behavior, using as less internal reactions as possible. 

As a first attempt we tried to eliminate reversible in-

ternal reactions since these reactions will be through 

the whole network in some way. We illustrated the 

technique by a small example taken from the paper 

[19] which contains 4 exchange reactions and 6 inter-

nal reactions with 6 reactants. It showed that the 

number of EFMs is reduced from 44 to 6 if all reac-

tions are reversible, indicating that the fast growth of 

the number of 
EFMs with the number of reversible interac-

tions; and the number of EFMs are reduced from 16 to 

7 

if all internal reaction are reversible and ex-

change reactions are irreversible; and the number of 

EFMs are reduced from 7 to 5 if two of the internal 

reactions reversible and all others are irreversible. For 

this small example it is not so significant by looking at 

the absolute numbers. However the first mentioned 

reduction tells us that, the reduced network has EFMs 

less than 44% of the original network has, and the 

second reduction is less than 71% of EFMs of the 

original network. Hence the reduction is significant 

even in small problem cases. If a network size is large 

then the situation will be different apparently. Let us 

take a close look at the E. coli core model mentioned 

above. Among the 77 reactions 14 are reversible ex-

change reactions and the biomass production can be 

considered as an irreversible exchange reaction. 

Among the 62 internal reactions, 27 are irreversible 

and 35 are reversible. The program efmtool yields 

2295967 EFMs. So reducing the number of EFMs will 

be desirable and more significant reduction is ex-

pected. By our approach we can eliminate 35 reversi-

ble internal reactions and 9 reactants. This will give us 

a network model with 52 reactants involved in 42 

reactions among which 15 are exchange reactions and 

27 (= 62 − 35)  are irreversible internal reactions. 

Unfortunately we did not have enough time to carry 

out and verify all the computations and computation 

results need for this model. It remains as a further re-

search topic. The second drawback in the discussion is 

that we have no theoretic statements to guarantee a 

good reduction, say "under what conditions a minimal 

number reactions is sufficient". This becomes a topic 

for further investigation. Finally, note that the net-

works studied in this thesis are basically dynamical 

systems with polynomials of the state 

riables x1 ,… , xn . So the steady state analysis, for ex-

ample, determination of number of real steady states 

can be expected to use Groebner basis, which, we ex-

pect, can provide us more insight of the problems we 

studied here and much more in general for example 

how parameters will influence the number of steady 

states. We would like to point out that there are sever-

al difficulties in such a study of Groebner basis appli-

cation, despite its advantage of possibility of qualita-

tivedescription for the parameters. First, the underly-

ing field in our study is the set of the reals which is 

not closed. This increases difficult level significantly. 

Next, the computation complexity is very high. This 

requires a better understanding of the problem struc-

ture so to possibly make the computation efficient. 
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